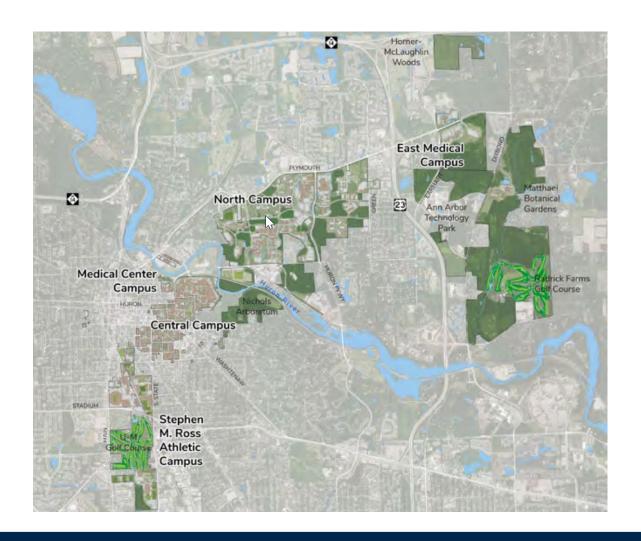
Modeling Energy Conservation Potential at Scale

MiAPPA 2025 Summer Conference July 17, 2025 | 9:00 AM - 9:45 AM

Presented by:
Andrew Price, PE



Presenter

Andrew Price, PE
Project Manager
Affiliated Engineers, Inc.

University of Michigan

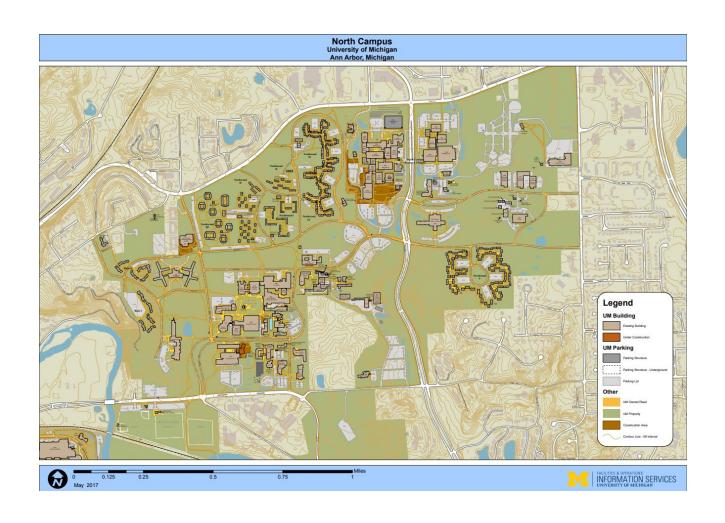
1817

year founded

Ann Arbor

Michigan

Public Research


University

University of Michigan North Campus

History & Statistics:

- Constructed: Early 1950s 2022
- 8M square feet over 1,000 acres
- Various construction types & building uses
- Pfizer Complex, purchased in 2009
 - 1.2M square feet
 - 174 acres
 - 28 buildings
 - District heating and cooling only

President's Commission on Carbon Neutrality

Goal Recommendation

Prioritize direct emissions reductions for Scope 1 by setting a goal of eliminating them across all three campuses by 2040 and exceeding global science-based targets via direct emissions reductions along the way

Strategy Recommendation

Create and update campusand district-level master plans to reflect that emissions mitigation is one of the university's top priorities, and update such plans at regular intervals with campus community input

Strategy Recommendation

Embark on a phased, district-level U-M's approach to converting heating and cooling infrastructure to be fossil fuel free, beginning with electrified systems centered on geo-exchange with heat recovery chiller technology and with the flexibility to pivot to other proven technological solutions as they emerge

Vision 2034

• 2023 Initiative to develop a 10-year vision for the university

Impact Areas

Life-Changing Education

Human Health & Well-Being

Democracy, Civic & Global Engagement

Climate Action,
Sustainability &
Environmental Justice

CampusPlan2050

Strategic Planning to inform campus development in support of Vision2034 and beyond

Modernize existing academic and research facilities, and develop new ones

Thoughtful green spaces and mobility enhancements

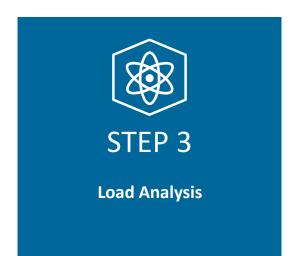
Innovation district to nurture discovery, entrepreneurship, and private-public partnerships

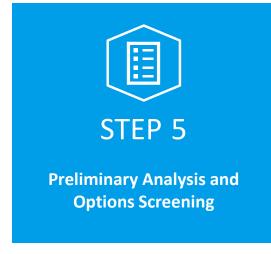
Environmentally responsible transportation linking the five major campus areas

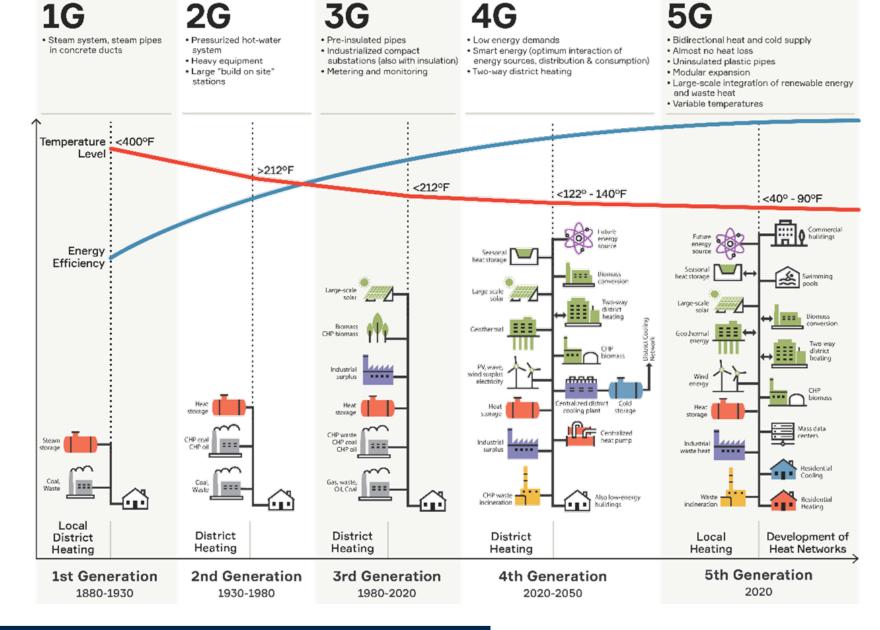
Environmentally responsible practices to help eliminate direct on-campus greenhouse gas emissions by 2040

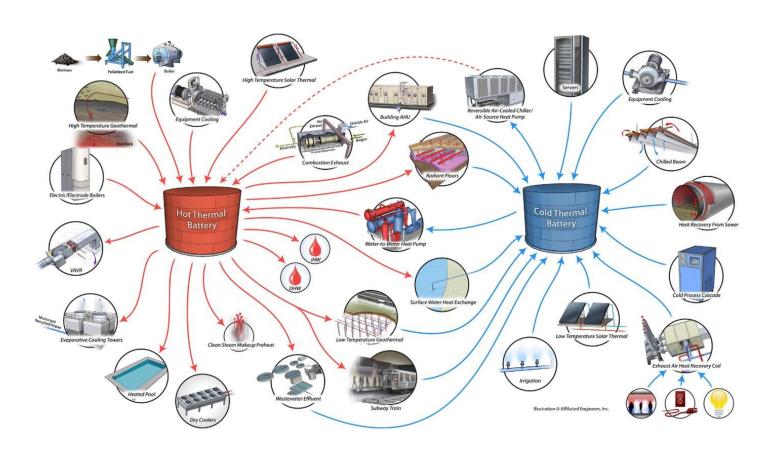
Investment and renewal opportunities to foster a model of sustainability and decarbonization

Goals of NCUMP

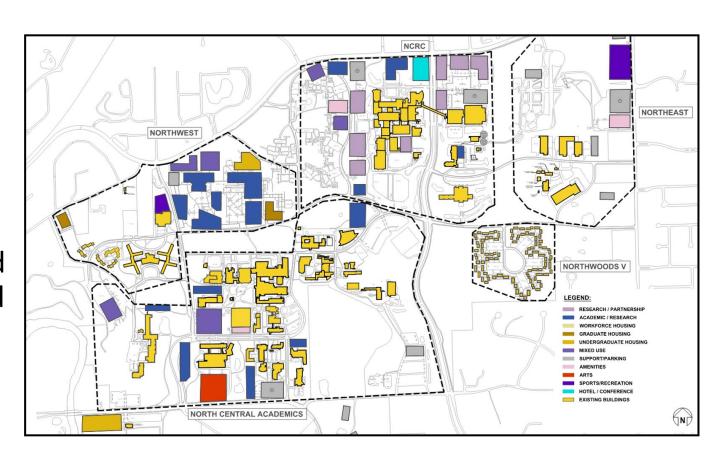

- Develop long term carbon neutrality strategy
- Inform infrastructure replacement investments
- Materials to communicate to campus stakeholders
- Industry best practices & consultant creativity to:
 - Optimize energy distribution, consumption, and generation
 - Identify and locate utility corridors, facilities, and infrastructure
 - Identify discrete and district energy systems in conjunction with the university's broader Integrated Master Plan
 - Role of heat recovery, energy sharing, thermal storage, etc.
 - Physical changes to buildings


Master Plan Process




Existing & Emerging Technologies

Existing & Emerging Technologies


- During the ideation phase, existing and emerging heating technologies and strategies were evaluated and screened to focus on technologies that are:
 - Viable
 - Significant in scale
 - Contribute meaningfully to U-M's energy, environmental, and operational goals

Future of North Campus

- The CP2050 Plan projects additional 4.15M GSF over first 10 years, and an additional 4.5M GSF at full build
- Convert existing buildings from steam to heating hot water, along with deep energy retrofits
- 4th generation combined heating and cooling plants with traditional chilled and heated water thermal distribution. Ambient piping distribution to multiple geothermal bore fields
- Additional utility import capacity

Step 1 to Decarbonization

Decarbonization Process

- 1 Perform Building Audits and System Survey and Background Data
- **2** Develop Energy Conservation Measure List
- **3** Representative Building Model Development
- 4 Building-by-Building Savings
- **5** Bundle Recommendations for Each of the 5 Campus Regions

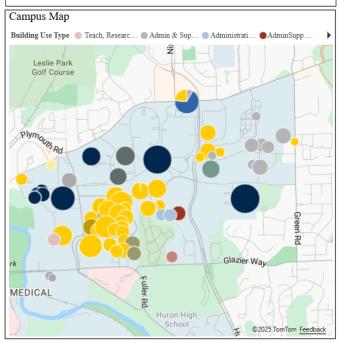
Proposed Audits

- Preliminary walk-through and data collection
- Building existing condition affects duration of survey
- Assume large laboratory will take up to 4 hours
- Assume small laboratory will take around 2 hours
- Non-laboratory buildings take 1 to 2 hours depending on complexity
- Assume up to 3 hours if a building includes a local heating/cooling plant

North Campus Utilities Masterplan DRAFT Field Visit Buildings - 1/4/2023								
	Building		Building		kBTU's /			
Number	Number	Building Name	Category	SQFT	sqft	Total BTU's		
1	395	FRANCOIS-XAVIER BAGNOUD	LAB	101,812	231.66	23,586,127,784		
2	396	BUILDING (FXB) DUDERSTADT CENTER	NON-LAB	240,256	186.69	44,853,621,884		
3	399	NORTH CAMPUS ADMIN (NCAC)	ADMIN	129,114	150.83	19,474,364,851		
4	406	ANN & ROBERT H LURIE BIOMEDICAL ENGINEERING	LAB	65,028	377.04	24,517,894,675		
5	407	G G BROWN LABORATORY	LAB	290,501	206.10	59,871,889,319		
6	415	NAVAL ARCH & MARINE ENGINEERING COMPLEX (NAME)	LAB	47,002	337.89	15,881,327,716		
7	424	GORGUZE FAMILY LABORATORY COMPLEX	LAB	80,487	226.46	18,226,837,394		
8	427	NORTH CAMPUS RECREATION BUILDING (NCRB)	NON-LAB	67,512	177.28	11,968,622,658		
9	432	ART & ARCHITECTURE BUILDING	NON-LAB	264,134	140.87	37,207,909,191		

Building Data Dashboard

1.1 Building Information



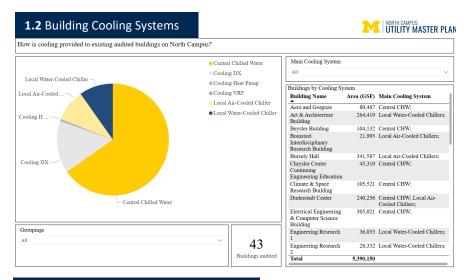
What are the existing audited and additional buildings on North Campus and what are their relative energy usages?

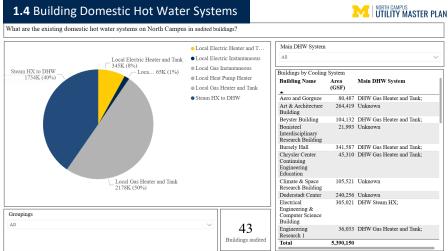
Number of Buildings* Average Building Age (yrs)

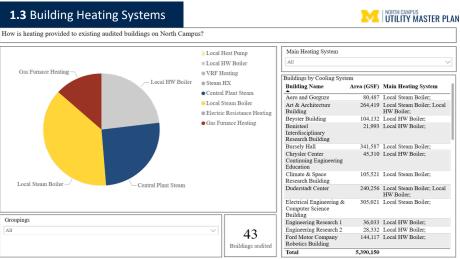
110

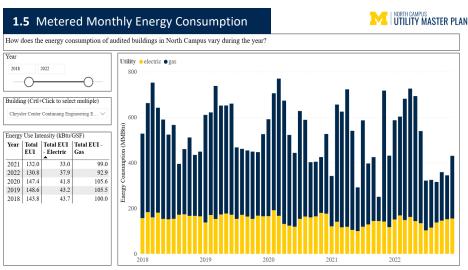
Campus Map

^{*} Number of buildings is lower than actual building count on North Campus as "typical" has been used for residential units.

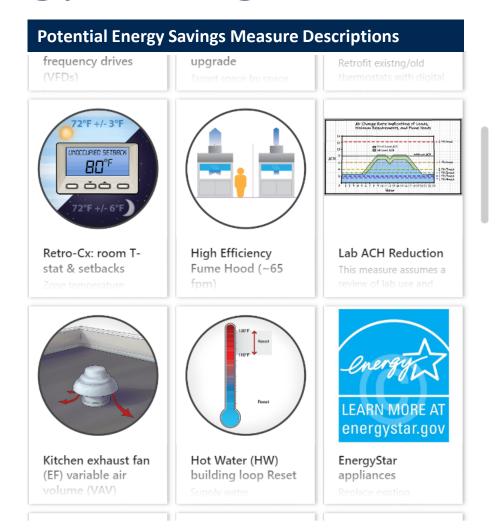

Area (GSF) By Building Use Type								
Residence Hall	Adm	R	P					
	276	,	2					
			2					
	Clin	S						
1 821 003	Libr	R						
	Residence Hall	376, Clin	376, 2 Clin S					

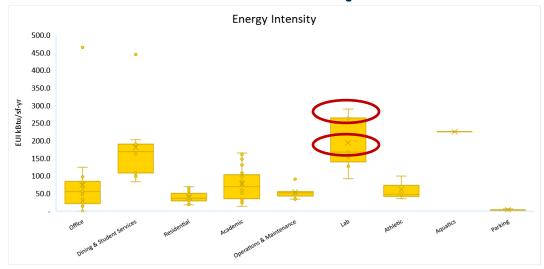

Building Name ▼	Area (GSF)	Building Use Type	Year Built	Average EUI	Average Gas EUI	Average Electric EUI
Walgreen Drama Center	84,149	Teach, Research, Support	2007	162.8	123.10	39.67
University Hospital Child Care Center	14,850	Clinical Delivery	1991	115.1	92.43	22.63
U-M Transportation Research Testing Building	3,454	Teach, Research, Support	2012	0.0	0.00	0.00
U-M Transportation Research Institute	77,883	Teach, Research, Support	1969	125.0	86.50	38.54
Stamps Auditorium	13,488	Teach, Research, Support	2008	26.9	0.00	26.87

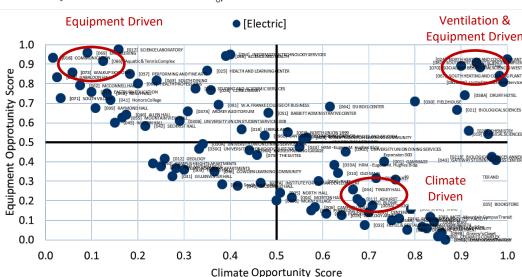

Buildings that do not have metered utility data show Average EUI, Average Gas EUI, and Average Electric EUI as zero.

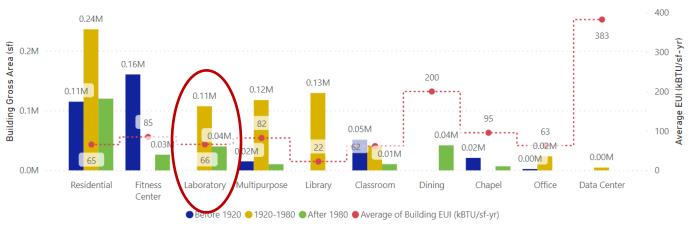


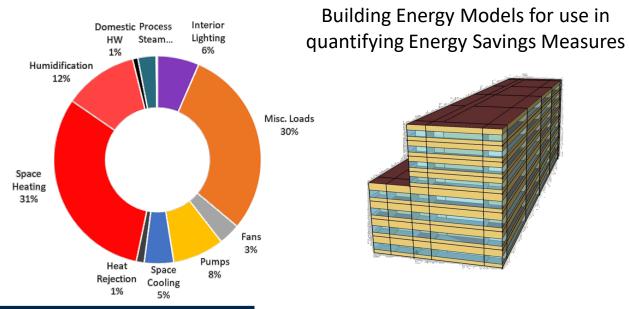
System Survey and Background Data



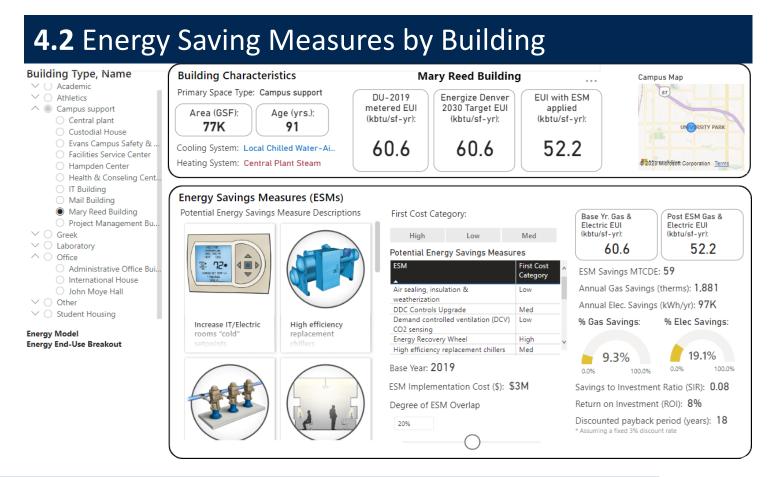

Develop Detailed Energy Saving Measure List

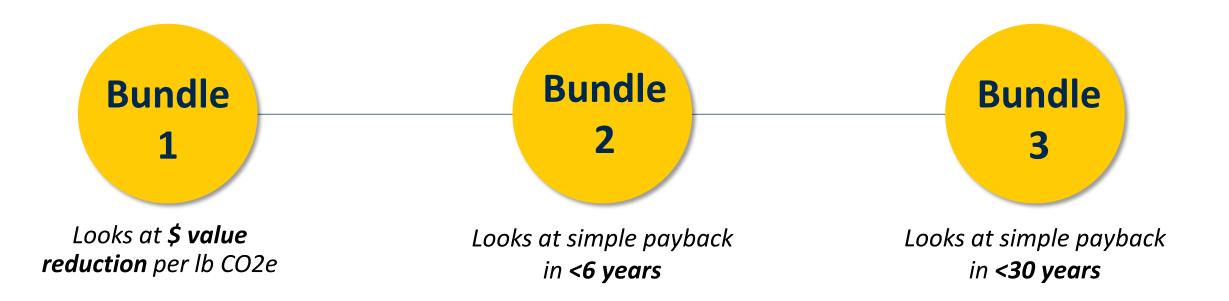

ESM ■ DDC Controls Upgrade ⊞ Efficient ULT Freezers (-80) Stirling and others. ⊞ EnergyStar appliances Hot Water (HW) building loop Reset □ Lab ACH Reduction Occupancy based receptacle control ⊕ Occupancy control HVAC setback ⊞ Refrigerantion desuperheater-service water pre-heat □ Retro-Cx: airside economizer Datra Currann T stat 9, sathasles





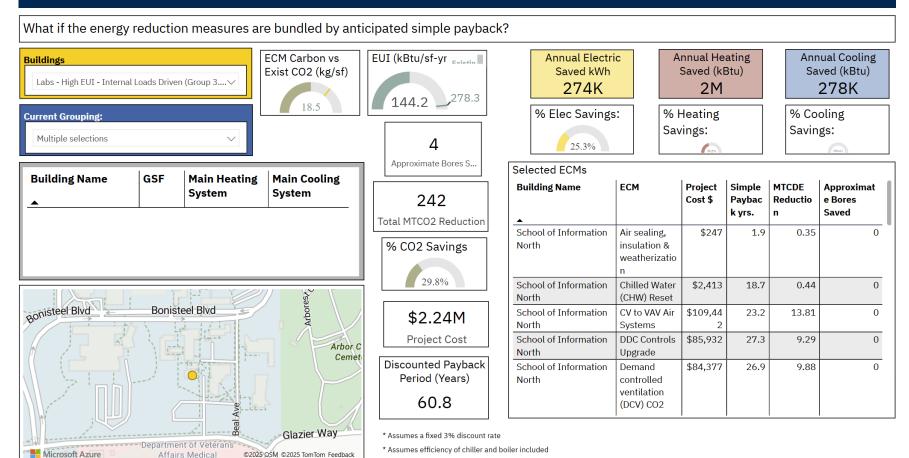
Generate Representative Building Models




Develop Building-by-Building Demand Reduction Calc

ECM Bundles

- Physical audit of 43 buildings extrapolated and combined with university recorded data
- Three Energy Conservation Measures (ECM) bundles recommended for each five regions



Discounted paybacks further evaluated in Total Cost of Ownership model

ECM Bundles

9.1 ECMs Bundled by Simple Payback for NCA Buildings

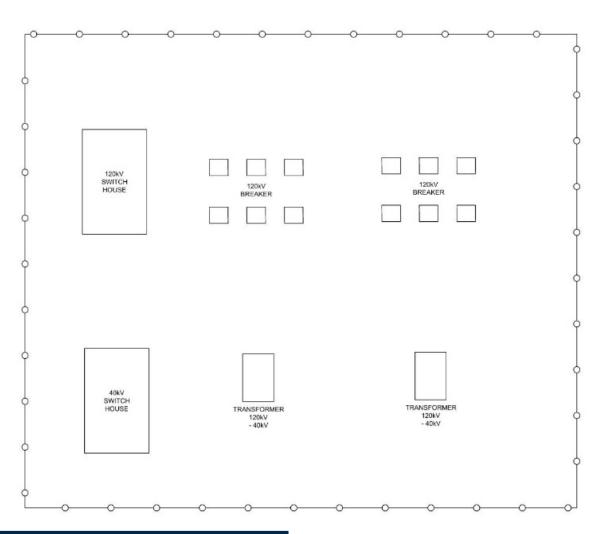
UMP Modeling

Campus Region	ECM Bundle	MTCO2 Reduction	% Reduction Electricity	% Reduction Heating Energy	% Reduction Cooling Energy	Est. # of Avoided Geo-bores	Project Cost	Discounted Payment Period (Years)
NCRC	ECM Bundle 1	16,979	13.2%	20.6%	4.5%	115	\$33.1M	11.6
	ECM Bundle 2	12,980	8.3%	17.4%	2.1%	50	\$5.16M	2.3
	ECM Bundle 3	16,923	12.9%	20.7%	4.5%	115	\$32.68M	11.5
NWR	ECM Bundle 1	898	0.7%	8.1%	0.1%	3	\$845K	5.0
	ECM Bundle 2	937	0.8%	8.4%	0.1%	3	\$1M	5.9
NW V	ECM Bundle 1	56	N/A	4.1%	N/A	N/A	\$294K	27.7
	ECM Bundle 1	13,817	13.2%	5.6%	1.0%	40	\$11.01M	6.1
NCA	ECM Bundle 2	11,081	11.0%	3.2%	0.4%	19	\$2.18M	1.5
	ECM Bundle 3	14,899	13.7%	7.8%	1.3%	52	\$17.85M	8.9
NE	ECM Bundle 1	34	0.1%	4.9%	2.6%	1	\$81K	13.7
	ECM Bundle 2	19	-1.9%	4.6%	1.6%	1	\$33K	8.6
	ECM Bundle 3	34	-1.3%	6.3%	2.9%	1	\$86K	13.6

Recommendation 1

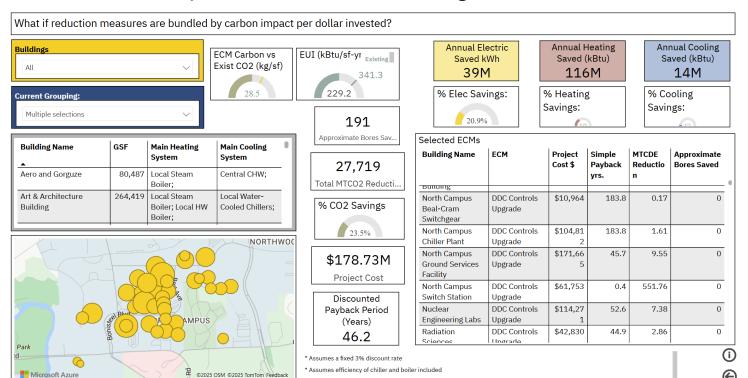
 The University should move forward with the next level (design) of geothermal systems

Recommendation 2


As an immediate step, the
 University should develop a series
 of projects to convert existing
 building heating systems from
 steam to hot water

Recommendation 3

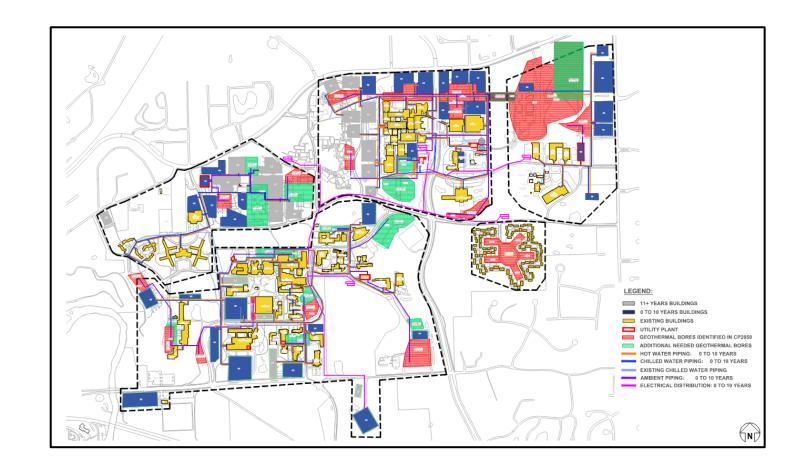
 Maintain engagement with ITC/DTE, the electricity utility that serves the campus, to deliver the additional electrical capacity



Recommendation 4

 Invest extensively in reducing building energy demand over the next decade. Strategically, this should be executed in combination with converting buildings to receive lowtemperature hot water rather than steam

9.2 ECMs Bundled by CO2 Reduction for NCA Buildings



CO2 energy and cost reductions were derated to account for interaction between the measure

Recommendation 5

 Further identify and reserve the significant footprint associated with utility distribution and geothermal bore fields

Questions

MiAPPA 2025 Summer Conference July 17, 2025 | 9:00 AM - 9:45 AM

Modeling Energy Conservation Potential at Scale

