

ANSI/ASHRAE Standard 62.1-2022 (Supersedes ANSI/ASHRAE Standard 62.1-2019) Includes ANSI/ASHRAE addenda listed in Appendix Q

Ventilation and Acceptable Indoor Air Quality

See Appendix Q for approval dates by ASHRAE and the American National Standards Institute

This Standard is under continuous maintenance by a Standing Standard Project Committee (SSPC) for which the Standards Committee has established a documented program for regular publication of addend or revision, including procedures for timely, documented, contenuus action on requests for charge to any part of the Standard, Instructions for how to submit a charge can be found on the ASHARE⁴ website (www.sharto.org/continuous-maintenance).

The larse edition of an ASHRAE Standard may be purchased from the ASHRAE website (www.abrae.org) or from ASHRAE customer Service, 180 Technology Parkvorg, Peachtree Corners, GA 3002 E-Lamaic orders@abrae.org, Fac: 678-539-2129. Telephone: 404-638-6400 (worldwide), or toll free I-800-527-4723 (for orders in US and Canada). For reprint permission, pto to www.abrae.org/bermissions.

© 2022 ASHRAE ISSN 1041-2336

an. the formation Reference and Automation Reference and Automation and Automation Reference and Automation and Automation and Automation and Automation and Automation and Automation and Automatical Automation and Automatical Automati

Indoor Air Quality Procedure (IAQP)

Made Simple

ASHRAE Standard 62.1 -2019 and -2022

2025

Audwin Cash GPS Air acash@gpsair.com

Purpose

The indoor air quality procedure defined by AHSRAE Standard 62.1 and permitted under the Michigan Mechanical Code, provides a large energy savings potential that is often overlooked. Progress and publications from ASHRAE makes applying the indoor air quality procedure far more prescriptive and less risky for owners and operators.

Completing this presentation will increase a participant's knowledge and understanding of ASHRAE 62.1 Ventilation and Acceptable Indoor Air Quality for Commercial Buildings, specifically the Indoor Air Quality Procedure as an effective approach to deliver indoor air quality with lower cost and lower energy demands.

Building mechanical and energy codes are being updated, understanding the current sa demanding greater knowledge and mastery of 62.1-2019 and 62.1-2022. This course impacts several professional skills: confidence in the IAQP, LEED v5 evolving to support the Indoor Air Quality Procedure, economic trade offs of ventilation procedures, and the emerging industry trend that indoor air quality and ventilation management are jointly achievable.

Agenda

- Building Code Support
- Procedures & Evolution
- Mechanical Ventilation
 Procedures & O.A. Requirements

IAQP

- Design Compounds
- Verification/Validation
- Calculators and tools

Filtration & Air Cleaner Requirements

CO2

LEED

Q&A

Codes and Standards

Before applying a ventilation standard from ASHRAE, understand what the relevant state or local mechanical code requires. Vast majority of locations support a unified IMC; which supports the VRP and the IAQP to maintain air quality.

Note the language in IMC 2015 and IMC 2021

§403.2 Outdoor air required.

The minimum outdoor air flow rate shall be determined in accordance with §403.3 (the VRP)

Exception: Where the registered design professional demonstrates that an engineered ventilation system design will prevent the maximum concentration of contaminants from exceeding that obtainable by the rate of outdoor air ventilation determined in accordance with Section 403.3, **the minimum required rate of outdoor air shall be reduced in accordance with such engineered system design**

ASHRAE Standard 62.1-2013 supports IMC 2015. Standard 62.1-2019 supports IMC2021

Outdoor Airflow Procedures

The Ventilation Rate Procedure (VRP), the Indoor Air Quality Procedure (IAQP), the Natural Ventilation Procedure, or a combination thereof shall be used to meet the requirements of this section.

Ventilation Rate Procedure. Prescriptive design procedure presented

Indoor Air Quality Procedure. Engineered approach procedure

Natural Ventilation Procedure. Outdoor air is provided through openings to the outdoors.

IAQP is the Preferred Approach

The VRP is an indirect solution to achieving acceptable IAQ. The IAQP is a more direct approach to the goal

62.1-2019 User's Manual D- 90163

- ✓ More cost-effective solution
- ✓ Better air quality
- ✓ Without increasing first cost

The Energy Component

Contaminant Concentrations

IAQ Procedure | ASHRAE 62.1

ASHRAE Tightly Defines IAQP

(reducing the variance and risk on the engineers)

ASHRAE 62.1 §6.3 Indoor Air Ouality Procedure Steps	THEN -2016 and earlier	NOW -2019 and later
Outdoor Air Quality Evaluation	STANDARD resource list	STANDARD via EPA website* + CALCULATOR
Design Compounds	Undefined	STANDARD Table 6-5 + CALCULATOR
Design Compound Limits	Undefined	STANDARD Table 6-5 + CALCULATOR
Define Generation Rates by Sources	Undefined	STANDARD + CALCULATOR
Mixtures of Compounds	Undefined	STANDARD Table 6-6 + CALCULATOR
Determine & Air Cleaner Efficiency	Manufacturer Claims	STANDARD Tests ASHRAE 145.2 and 52.2
Perform Mass Balance Calculation for Outdoor Airflow	STANDARD Formula	STANDARD + CALCULATOR
Document Design	STANDARD §6.3.6	STANDARD §6.6
Evaluate Air Quality	Subjective Evaluation	STANDARD approach §7.3

* unique site conditions must be evaluated

ASHRAE 62.1-2019

Relevant Areas to Review

- Section 4 Outdoor Air Quality outdoor air/local contaminants understand and document outdoor air quality – no action recommended/taken under the standard.
- Section 5 Systems & Equipment any air cleaning devices must be listed to UL2998 (§5.9.1)
- Section 6 Procedures VRP, IAQP, and Natural Ventilation
- Appendix C Zone Air Distribution Effectiveness
- Addendum AA Ventilation and Acceptable Indoor Air Quality Approved 10/19/2021

ASHRAE 62.1-2022

Relevant Areas to Review

- Section 4 Outdoor Air Quality unchanged from -2019
- Section 5 Systems & Equipment several changes; few impacting IAQP
- Section 6 Procedures several changes, aligns to -2019 Addendum AA
- Section 7 Construction & System Startup
- Appendix F, N, L
- Addenda C, N Ventilation and Acceptable Indoor Air Quality Approved 9/30/2022

IAQ Procedure | ASHRAE 62.1

Standard 62.1 Air Quality Journey Outdoor Air

1

§4 OUTDOOR AIR QUALITY

Investigate outdoor air quality and document in accordance with §4.1 and §4.2 and document in accordance with §4.3

§4.1 Regional Air Quality. use NAAQS data and/or U.S. EPA data: <u>NAAQS Table | US EPA</u> or Canada: <u>Air Quality</u> (<u>ccme.ca</u>). Interactive Map for the US: <u>EPA Interactive</u>

§4.2 Local Air Quality. An observational survey of the building site and immediate surroundings shall be conducted during the hours the building is expected to be normally occupied to identify local contaminants from surrounding facilities that will be of concern if allowed to enter the building.

§4.3 Documentation. Documentation of the outdoor air quality investigation shall be reviewed with building owners or their representatives and shall include regional air quality compliance, local survey information (details in standard) and a conclusion regarding the acceptability of outdoor air quality and the supporting information.

Standard 62.1 Air Quality Journey Equipment

2

§5 SYSTEMS AND EQUIPMENT

Follow the section as required by the building type and HVAC equipment used. Some particularly important decisions reside in:

§5.5 Particulate Matter Removal. MERV rating of 8 or higher as rated by Standard 52.2 or ISO ePM10 upstream of all cooling coils or other devices with wetted surfaces though which air is supplied to an occupiable space

§5.9.1 Air Cleaning Devices. Air-cleaning devices shall be listed and labeled in accordance with UL2998.

§5.9.2 Ultraviolet Devices. UV generating devices in supply air or spaces shall not transmit 185nm wavelengths, which may generate ozone.

§5.18.1 All systems shall be provided with manual or automatic controls to maintain not less than the outdoor air intake flow (V_{ot}) required by section 6 under all load conditions
 §5.18.2 Systems with fans supply variable primary air (V_{ps}) shall be provided with control equipment, method or devices to maintain no less than the outdoor air intake flow (V_{ot}) required for §5.18.1

Standard 62.1 Air Quality Journey **Procedures**

3

§6 PROCEDURES

The Ventilation Rate Procedure (VRP), the Indoor Air Quality Procedure (IAQP), the Natural Ventilation Procedure, or a combination thereof shall be used to meet the requirements of this section.

§6.1.1 Ventilation Rate Procedure. Prescriptive design procedure presented in §6.2

§6.1.2 Indoor Air Quality Procedure. Engineered approach procedure presented in §6.3

§6.1.3 Natural Ventilation Procedure. The prescriptive or engineered system design procedure presented in section 6.4 in which outdoor air is provided through openings to the outdoors.

§6.1.4 Outdoor Air Treatment. In buildings located in an area where the national standard or guideline for PM10 is exceeded, particle filters shall be provided, or where PM2.5 exceeds, MERV11 or higher is required. Where the 8-hour ozone limit of 0.100 ppm or 195 µg/m³ is exceeded, ozone air cleaning is required.

Standard 62.1 Air Quality Journey

§6.2 Ventilation Rate Procedure.

The outdoor air intake flow (V_{ot}) shall be (Single Zone Systems Shown):

 $V_{ot} = V_{oz}$ (6-3) for single zone systems outdoor air total = outdoor air per zone

$$V_{oz} = V_{bz} / E_z \tag{6-2}$$

Where Vbz is determined by calculating using values in Table 6-1:

 $V_{bz} = R_p \times P_z + R_a \times A_z$ (6-1)

 E_z is determined by looking up a value in Table 6-4. Two examples:

- Ceiling supply of warm air 15°F or more above the space temperature and ceiling return (E_z =0.8)
- Floor Supply of warm air and ceiling return ($E_z = 0.7$)

Example *classrooms (ages 5 to 8)* People rate: R_p=10 cfm/person Area rate: R_a = 0.12 cfm/ft²

Segment from Table 6-1	People	People Outdoor		Outdoor	Default Values		
-	Air R	Air Rate R _p Air Rate R _a	Air Rate R _a		Occupant Density	-	
Occupancy Category	cfm/ person	L/s· person	cfm/ft ²	L/s·m ²	#/1000 ft ² or #/100 m ²	Air Class	OS (6.2.6.1.4)
Educational Facilities							
Art classroom	10	5	0.18	0.9	20	2	
Classrooms (ages 5 to 8)	10	5	0.12	0.6	25	1	
Classrooms (age 9 plus)	10	5	0.12	0.6	35	1	

IAQ Procedure | ASHRAE 62.1

Standard 62.1 Air Quality Journey **VRP Example**

§6.2 Ventilation Rate Procedure.

The outdoor air intake flow (V_{ot}) shall be:

Where Vbz is determined by calculating using values in Table 6-1 : $V_{bz} = R_p \times P_z + R_a \times A_z$ (6-1) $V_{bz} = 10 \text{ cfm/person } \times 25 \text{ persons } + 0.12 \text{ cfm/ft}^2 * 1,000 \text{ ft}^2$ $V_{bz} = 250+120 = 370 \text{ cfm}$

 $V_{oz} = V_{bz} / E_z$ (6-2) $V_{oz} = 370 \text{ cfm} / 0.8$ (high supply high return) $V_{oz} = 462.5 \text{ cfm}$

 $V_{ot} = V_{oz}$ (6-3) $V_{oz} = 462.5 \text{ cfm}$

Delivers approximately 18.5 cfm/person

Standard 62.1 Air Quality Journey

Determine breathing zone outdoor airflow (Vbz) following Sections 6.3.1 and 6.3.5 (or use a calculator)

Identify Design Compounds and PM2.5 Sources. People, Building, Outdoor Air, Other

§6.3.1 Design Compounds (DC) and PM2.5 Sources. The system design shall be based on the DCs and PM2.5 specified table 6-5. If there are additional outdoor sources identified from completing the process in section 4.3, or if there are unusual sources, the compounds associated with those sources shall be determined and documented. For each DC and PM2.5, the emission rates form the indoor sources from occupants, building materials, furnishings, equipment and other sources and the outdoor concentration shall be determined.

Informative Notes:

- 1. Indoor emission rate information for some compounds is provided in Informative Appendix N
- 2. Outdoor concentrations were determined in §4

Standard 62.1 Air Quality Journey

Table 6-5 Design Compounds, PM 2.5, and Their Design Limits

Design Compounds (D.C.)	Design Limit	Cognizant Authority
Acetaldehyde	140.0 µg/m3	Cal EPA CREL
Acetone	1200.0 µg/m3	AgBB LCI
Benzene	3.0 µg/m3	Cal EPA CREL
Dicholoromethane	400.0 µg/m3	Cal EPA CREL
Formaldehyde	33.0 µg/m3	Cal EPA 8-hour CREL
Napthalene	9.0 µg/m3	Cal EPA CREL
Phenol	10.0 µg/m3	AgBB LCI
Tetrachloroethylene	35.0 µg/m3	Cal EPA CREL
Toluene	300.0 µg/m3	Cal EPA CREL
1,1,1 - trichloroethane	1000.0 µg/m3	Cal EPA CREL
Xylene, total	50.0 µg/m3	AgBB LCI
PM2.5	12.0 µg/m3	US EPA NAAQS (annual mean)
Carbon monoxide	10310.0 µg/m3	US EPA NAAQS
Ozone	137.0 µg/m3	US EPA NAAQS
Ammonia	200.0 µg/m3	Cal EPA CREL

ASHRAE: Published peer-reviewed papers provide a reference for design teams to use to compile reasonable emissions rates of the design compounds. ASHRAE IAQP calculator D-86925 simplifies that selection.

Standard 62.1 Air Quality Journey IAQP Design Compounds (continued)

Table 6-6 Mixtures of Compounds

Upper Respiratory Tract Irritation	Eye Irritation	Central Nervous System
Acetaldehyde	Acetaldehyde	Acetone
Acetone	Acetone	Dichloromethane
Xylene, total	Xylene, total	Xylene, total
Ozone	Formaldehyde	1,1,1 - trichloroethane
	Ozone	Toluene

§6.3.2 Design Compounds (DC) and PM2.5 Concentration. Compounds having one or more of the mixture effects in Table 6-6 shall be added in the mixed exposure sum (E_m), as determined by Equation 6-12 shall be less than 1.0.

$$E_m = C_1 / DL_1 + C_2 / DL_2 + C_i / DL_i$$
 (6-12)

where:

 E_m = mixed exposure sum C_i = mass-balance model calculated airborne peak concentration for the i-th DC DL_i = design limit for the i-th DC

Standard 62.1 Air Quality Journey Mass Balance

§6.3.3.1 Mass-Balance Analysis. Using a steadystate or dynamic mass-balance analysis, the minimum outdoor airflow rates required to achieve the concentration limits specified in §6.3.2 shall be determined for each DC, mixture of DCs and PM2.5 within each zone served by the system.

Figure F-1 Ventilation system schematic—constant-volume system with no infiltration/exfiltration. (* $V_{ot} = V_{oz}$ for single-zone systems.)

Figure F-2 Ventilation system schematic—variable-air-volume system with no infiltration/exfiltration. (* $V_{ot} = V_{oz}$ for single-zone systems).

Symbol or Subscript	Definition		
А, В	filter location		
V	volumetric flow		
С	contaminant concentration		
E_{z}	zone air distribution effectiveness		
E_{f}	filter efficiency		
F_r	design flow reduction fraction factor		
Ν	contaminant generation rate		
R	recirculation flow factor		
Subscript: o	outdoor		
Subscript: r	return		
Subscript: b	breathing		
Subscript: z	zone		

Required Recirculation Rate

Filter Location	Flow	Outdoor Airflow	Required Zone Outdoor Airflow (V _{oz} in Section 6)	Space Breathing Zone Contaminant Concentration
None	VAV	100%	$V_{oz} = \frac{N}{E_z F_r (C_{bz} - C_o)}$	$C_{bz} = C_o + \frac{N}{E_z F_r V_{oz}}$
А	Constant	Constant	$V_{oz} = \frac{N - E_z R V_r E_f C_{bz}}{E_z (C_{bz} - C_o)}$	$C_{bz} = \frac{N + E_z V_{oz} C_o}{E_z (V_{oz} + R V_r E_f)}$
А	VAV	Constant	$V_{oz} = \frac{N - E_z F_r R V_r E_f C_{bz}}{E_z (C_{bz} - C_o)}$	$C_{bz} = \frac{N + E_z V_{oz} C_o}{E_z (V_{oz} + F_r R V_r E_f)}$
В	Constant	Constant	$V_{oz} = \frac{N - E_z R V_r E_f C_{bz}}{E_z [C_{bz} - (1 - E_f)(C_o)]}$	$C_{bz} = \frac{N + E_z V_{oz} (1 - E_f) C_o}{E_z (V_{oz} + R V_r E_f)}$
В	VAV	100%	$V_{oz} = \frac{N}{E_z F_r [C_{bz} - (1 - E_f)(C_o)]}$	$C_{bz} = \frac{N + E_z F_r V_{oz} (1 - E_f) C_o}{E_z F_r V_{oz}}$
В	VAV	Constant	$V_{oz} = \frac{N - E_z F_r R V_r E_f C_{bz}}{E_z [C_{bz} - (1 - E_f)(C_o)]}$	$C_{bz} = \frac{N + E_z V_{oz} (1 - E_f) C_o}{E_z (V_{oz} + F_r R V_r E_f)}$

IAQ Procedure | ASHRAE 62.1

Air Cleaner Testing Procedures

ASHRAE 62.1-2022

Where particulate matter or gas-phase air cleaning is included in the design, the removal efficiencies shall be specified as follows. Particle matter filters show report an efficiency reporting value (MERV) in accordance with ASHRAE Standard 52.2 or reporting in accordance with ISO 16890. Gas-phase air cleaners shall report an efficiency test for all compounds included in the design in accordance with any of the following:

- a. ASHRAE Standard 145.2
- b. ISO 10121-2
- c. Testing Methods in Section 6.1.2.10.4 and 10.5 and reported as required in ASHRAE Standard 145.2 Section 11
- d. Testing to a national consensus standard approved by AHJ
- e. For technologies not covered by any of the above, tests developed to demonstrate the removal efficiency shall be performed by a third party. The custom efficiency tests shall be conducted for all compounds included in the design and shall comply with: ... not conform to above, Or custom third-party tests approved by the AHJ and performed in situ

Standard 145.2:

Laboratory Test Method for Assessing the Performance of Gas-Phase Air-Cleaning Systems: Air Cleaning Devices

Standard 52.2:

Method for Testing General Ventilation Air-Cleaning Devices for Removal Efficiency by Particle Size

Filter & Air Cleaner Effectiveness

Filter Efficiency (E_f)

Removal Efficiency (Ef) ASHRAE 145.2/52.2						
Acetaldehyde	44%					
Acetone	45%					
Benzene	54%					
Dicholoromethane	52%					
Formaldehyde	40%					
Napthalene	95%					
Phenol	73%					
Tetrachloroethylene	78%					
Toluene	86%					
1,1,1 - trichloroethane	41%					
Xylene, total	92%					
PM2.5	77%					
Carbon Monoxide	0%					
Ozone	36%					
Ammonia	10%					

Validating Air Cleaners

- 62.1-2022 requires Standards 145.2 and 52.2 with some alternatives
- ASHRAE has at least 2 position papers on filtration and air cleaning
 - Devices that produce compounds to remove or inactivate pollutant(s) should only be used if proven safe
 - Performance should be based on published standardized tests from ASHRAE or other orgs. or agencies
 - Devices should only be used when tested and labeled for ozone emissions in accordance with UL 2998

Standard 62.1 Air Quality Journey

§7.3 Indoor Air Quality Procedure Verification

§7.3.1 Objective Evaluation. Perform design compound (DC) and PM2.5 measurement in the completed building to verify that design limits (DLs) are met. The peak concentrations over an 8-hour occupied period shall not exceed the DL for carbon monoxide. For Ozone, PM2.5, the average concentration measured over an 8-hour occupied period shall not exceed the DL. Measurement methods and procedures are defined in Tables 7-1, 7-2, and 7-3

Table 7-1 Allowed Laboratory Test Methods

Compound		Allowed Test M	ethods		
VOCs except formaldehyde, acetaldehyde and acetone		ISO 16000-6; EPA IP-1, EPA TO-17; ISO 16017-1; ISO 16017-2; ASTM D6345-10			
Formaldehyde, acetaldehyde a	nd acetone	ISO 16000-3; EPA TO-11; EPA IP-6; ASTM D5197			
Carbon monoxide		ISO 4224; EPA	IP-3		
ble 7-2 Direct Reading Inst	ruments Mini Ozon	imum Specifications ne PM2.5	Carbon Monoxide		
Accuracy (±)	ruments Mini Ozon 5 ppl	imum Specifications ne PM2.5 b Greater of 5 μg /m ³ or 20% of reading	Carbon Monoxide Greater of 3 ppm or 20% of reading		

Table 7-3 Number of Measurements Points

Total Occupied Floor Area, ft ² (m ²)	Number of Measurements
≤25,000 (2500)	1
>25,000 (2500) and <20,000 (5000)	2
>50,000 (5000) and ≤100,000 (10,000)	4
>100,000 (10,000)	6

Typically, air quality canister systems will meet these requirements

IAQP In Practice

- ASHRAE and manufactures have published calculators
- Mass-balance for DC's and combinations is automated
- Designer needs to provide location (OA data) and air cleaner selection
- Link to the calculator: <u>ASHRAE IAQP Calculator</u>

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAE's prior written permission.

Standard 62.1-2022 Indoor Air Quality Procedure (IAQP) Calculator Last Updated: March 2024

Disclaimer of Warranties

ASHRAE and the distributors of this information do not warrant that the information is free of errors. This spreadsheet is provided "as is" without warranty of any kind, either expressed or implied. The entire risk as to the quality and performance of the file and information is with you. In no event will ASHRAE be liable to you for any damages, including without limitation any lost profits, lost savings or other incidental or consequential damages arising out of the use or inability to use this program or data. ASHRAE reserves the right to discontinue support for this product at any time in the future, including without limitation discontinuing support of servers facilitating access to this product. This product is for personal use only. It is not licensed for networks.

System Design Airflow	0	cfm	N N
Cleaned Air Rate (Location A1)	0	CFM	`
Calculation Results			
Occupant Diversity	-		
	150	CFM	·
	-	CFM	· · · · · · · · · · · · · · · · · · ·
	-		
	-		
Outside Air Intake	150	CFM	

-ASHRAE

System population, maximum simultaneous # of occupants of space served by system System primary airflow from air handler; this may differ from the sum of primary airflow to zones Rated airflow through the installed air cleaning device for filter location A1

Occupant diversity, ratio of system peak occupancy to sum of space peak occupancies, = Ps/SPz
Zone outdoor airflow
Uncorrected outdoor air intake, = D*prester +prester +pre
Mixing ratio at primary air handler of uncorrected outdoor air intake to system primary flow $= N_{\rm ev}/N$

Mixing ratio at primary air handler of uncorrected outdoor air intake to system primary flow, = vou/vp System ventilation efficiency, based on method chosen above Minimum outdoor air intake, vote-tvoz Calculated Vot satisifies IAQP requirements

IAQ Procedure | ASHRAE 62.1

62.1 IAQP Standards Driven Tool Classroom IAQP

System Selection System Type Filter Location	Single Zone A1		Choose selection from dropdown. Choose selection from dropdown. (Refer to INTRO tab for more information on filter location.)	
System Efficiency Calculation Method	Simplified Method		choose method from dropdown. (Simplified Method should only be selected for Multiple Zone)	
DATA ENTRY INSTRUCTIONS:				
1. Enter data in row 42 for a single zone o	nly.			
2. Enter data for the Clean Air Rate in cell	D16.			
3. Data for Primary Zone Airflow (column	J) is optional.			
System Inputs				
Design System Population (optional)	occupants	Ps	System population, maximum simultaneous # of occupants of space served by system	ED ENITRY for Eiltor Locations A2
System Design Airflow (antional)	of m	Vac	system primary arriver roll an handler. This may driver from the sum of primary arriver to zones. REQUIN	ED ENTRY for Filter Locations A2
Closed Air Pate (Lecation A1)	250 CEM	v µs	and bit no values are entered for zone primary annows.	
		٧C	Rated annow through the instance an cleaning device for filter location A1	
Calculation Results				
Occupant Diversity	-	D	Occupant diversity, ratio of system peak occupancy to sum of space peak occupancies, = Ps/ Σ Pz	
	125 CFM	Voz	Zone outdoor airflow (Single Zone Systems)	
	- CFM	Vou	Uncorrected outdoor air intake (Multiple Zone Systems)	
	-	Xs	Mixing ratio at primary air handler of uncorrected outdoor air intake to system primary flow, = Vou/Vps	
	-	Ev	System ventilation efficiency, based on method chosen above	
Outside Air Intake	125 CFM	Vot	Minimum outside air intake, Vot=Voz Calculated Vot satisifies IAQP requirements	
Critical Zone	-		This zone has the highest calculated ventilation efficiency	
Mixtures Check				
Outside Air Intake Override	125 CFM	Voz	Increase Voz if doesn't pass mixtures check	
Mixed Exposure Sum	0.18	Em	Upper Respiratory Tract Irritation	
Mixed Exposure Sum	0.68	Em	Eye Irritation	
Mixed Exposure Sum	0.04	Em	Central Nervous System	
Pass Mixtures Check?	Yes	Em < 1	Yes No	-AONKAE

Using 5 cfm of O.A. per student and 250 cfm of air cleaning at 50% removal value creates a passing scenario

Comparing IAQP and VRP **First Cost**

Project Location: Atlanta, GA

FIRST TIME EQUIPMENT SAVINGS				Outdo	or Airflow	ı (cfm)	Capacity & Initial Equipment Savings IAQP Savings @ Various Cost/Ton of HVAC							
Space Type	Area (ft ²)	Pop.	Ez	VRP	IAQP	VRP-	S	\$2k/ton	\$3k/ton	\$4k/ton	\$5k/ton			
Classroom (ages 5-8)	950	25	0.8	462	125	337	3	\$ 6,000	\$ 9,000	\$12,000	\$ 15,000			
Lecture Hall (fixed seats)	2,000	300	0.8	2,370	1,200	1,170	14	\$ 2,000	\$ 42,000	\$56,000	\$ 70,000			
Office Space	5,000	50	0.8	688	200	488	4	\$ 8,000	\$ 12,000	\$16,000	\$ 20,000			

Enthalpy for Atlanta, GA: 40

Considers HVAC capacity savings (tonnage) not including installation, duct sizing, DCV, ERV, or other simplifications.

Comparing IAQP and VRP Operating Cost

Results vary based on system design, geography, etc. Examples for Atlanta with annual energy estimate of 10 kWh/cfm

Project Location: Atlanta, GA

ANNUAL OPERATING BENEFIT OF THE IAQP				OUTDOOR AIRFLOW (cfm)				ANNUAL ENERGY SAVINGS AT VARIOUS KWH RATES							
								Energy							
Ѕрасе Туре	Area (ft ²)	Pop.	Ez	VRP	IAQP	VRP-IAQP		(kWh/cfm)		\$0.10/kWh		\$0.12/kWh		\$0.15/kWh	
Classroom (ages 5-8)	950	25	0.8	462	125	337		10	\$	337	\$	404	\$	506	
Lecture Hall (fixed seats)	2,000	300	0.8	2,370	1,200	1,170		10	\$	1,170	\$	1,404	\$	1,755	
Office Space	5,000	25	0.8	688	200	488		10	\$	488	\$	586	\$	732	

* estimate: assumes one air cleaner per 1,000 sq. ft. with 50% first pass removal efficiency

Concerning CO₂

- CO₂ is not a design compound under
 62.1
- There research and results on healthy levels of CO₂ is inconclusive
- ASHRAE is continuing to research and advise on this subject
- Reference Demand Control Ventilation levels in 62.1-2019 Table 6-1

ASHRAE Position Document on Indoor Carbon Dioxide

Approved by ASHRAE Board of Directors February 2, 2022

> Expires February 2, 2025

© 2022 ASHRAE 180 Technology Parkway • Peachtree Corners, Georgia 30092 404-636-8400 • fax: 404-321-5478 • www.ashrae.org

IAQ Procedure | ASHRAE 62.1

Excerpts from the ASHRAE Position Document

- Indoor CO₂ as an indicator of IAQ and ventilation is **commonly misinterpreted** within the HVAC industry and the research community and among the public.
- Indoor CO₂ concentrations greater than 1,000 ppm have been associated with increases in self-reported, nonspecific symptoms commonly referred to as sick building syndrome. However, those observations were not controlled for other contaminants or environmental parameters
- Indoor CO₂ concentrations vary by space type. Standard 62.1 range from about 1,000 ppm in office spaces to between 1,500 and 2,000 ppm in restaurants, lecture classrooms and above 2,500 ppm in conference rooms and auditoriums
- 62.1-2022 Addendum recommends demand control ventilation schemes (DCV) to be triggerable, depending upon space with CO₂ concentrations 600 to 2,100 ppm over 400 ppm ambient (1,000 to 2,500 ppm)
- Studies of U.S. Navy submariners show no significant difference in decision making performance in CO₂ concentrations of 600, 2,500, or 15,000 ppm (Acute exposure to low-to-moderate Carbon Dioxide Levels and Submarine Decision Making, Rodeheffer, Christoper et all, Aerospace Medical Association, June 2018)

Growing Support

Source reduction and air cleaning ... can greatly reduce contaminant harm without increasing ventilation rate **thus saving energy.**

In typical buildings minimum ventilation will be necessary to provide oxygen and remove human bioeffluents ... closer to the level of 4cfm/person...

Combination of source control, ventilation and air cleaning is most practical to handle the contaminants of concern.

IAQ Paradigms— The Next Generation

BY MAX SHERMAN, PH.D., FELLOW/LIFE MEMBER ASHRAE

ASHRAE's Vision is "a healthy and sustainable built environment for all." The "healthy" part of that vision primarily has to do with providing appropriate indoor air quality (IAQ). For the first century of ASHRAE's existence, that meant determining and providing minimum ventilation rates. Over the last few decades, however, research both within ASHRAE and in the health community has shown us that the ventilation-only approach cannot always achieve the vision because of the diversity of sources and the potential contributions of other removal mechanisms. On the other hand, consideration of sources and their impacts can lead to improvements in both health and sustainability. This article covers the evolution from the first paradigm ventilation rate—to the emerging harm paradigm, which has recently been enabled by some important research.

Even more than decarbonization, indoor air quality is fundamental to who ASHRAE is. The Society has long recognized that the provision of acceptable IAQ is an essential building service and central to ASHRAE's purpose.¹ Such a position is not exactly surprising given that since there was anything that could be called "indoors," early humans recognized the need to exhaust contaminants from fires. How we address IAO, however, has changed over time as both technology and our understanding of the science of IAQ has evolved. Accordingly, the paradigms we use have evolved. We are likely in the midst of another paradigm shift. These paradigms owe much to the English, particularly considering their proclivity to continually burn down Max Sherman, Ph.D., is a professor at the University of Nottingham and a retired staff senior scientist at the Lawrence Berkeley National Laboratory

the City of London. The first ventilation standard, which was of course before the advent of mechanical ventilation, might be said to be due to King Charles II and the Great Fire of 1666. All the new buildings were required to have sufficient operable windows for ventilation. Whenever the Palace of Westminster (aka the English Parliament) burned down, they attempted to build back better.

The first quantitative attempt at achieving acceptable IAQ is due largely to the fact that the English Parliament has often been considered by many² to be foul, rancid and pestiferous. While such a categorization may have been due to the location on a polluted Thames or the affairs of its occupants, Parliament chose to believe it was due to the building itself. When on Oct. 16, 1834, another Great Fire burned the building down, it

42 ASHRAE JOURNAL ashrae.org JULY 2024

ASHRAE Journal July 2024 By Max Sherman, ASHRAE Fellow & Vice-Chairman ASHRAE 241 Committee

IAQP in **LEED**

Under LEED v5 the USGBC references ASHRAE 62.1-2022 and opens the door to using the Indoor Air Quality procedure, adding credits for measurement & better indoor air.

Relevant section (points)

- Fundamental air quality (1)
- Air quality testing & monitoring (2)
- Enhanced air quality (1)
- Resilient spaces (2)

Initial Savings Opportunities

Smaller HVAC equipment:

- Air handlers and compressors (lower tonnage)
- Chillers
- Boilers

Simplified Designs:

- Eliminate DCV and sensors
- Smaller duct sizes
- Eliminate ERV

Other considerations:

- Eliminate or shrink onsite PV or geothermal systems
- Shift from "exotic" HVAC system designs to RTU or unitary equipment on some projects

Indoor Air Quality Procedure

The IAQP is potentially more cost effective but certainly delivers equivalent or better indoor air quality. With lower outdoor air, ongoing conditioning costs will be smaller.

Using the procedure will ensure a focus reducing and managing contaminants so that the HVAC equipment is appropriately sized to manage temperature and humidity while air cleaners mitigate design compounds for healthy air.

Q&A